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1
SYSTEM AND METHOD FOR OPTIMAL
POWER FLOW ANALYSIS

FIELD OF THE INVENTION

The present invention relates generally to power grids, and
more particularly to optimizing power flows in the power
grids.

BACKGROUND OF THE INVENTION

The Optimal Power Flow (OPF) problem for a power grid
having alternating current (AC) circuits concerns the problem
of determining bus voltages and generator power levels to
minimize a cost function representing an operation of the
power grid. The cost functions can include generator cost,
resistive losses or tertiary voltage control. The minimization
of the cost function is subject to OPF constrains that can
include the AC power flow constraints, bounds on power
generation, bounds on bus voltage magnitudes, bounds on
thermal losses, and limits on power transfer on lines.

The conventional methods relax the OPF to find a solution
using, e.g., the second order cone programming (SOCP). See,
e.g., U.S. 2012/0150504. However, such approach provides
optimal solution only under satisfaction of sufficient condi-
tions for the relaxations. The sufficient conditions, e.g., rank
condition, only hold under restrictive assumptions on the
network topology and constraints on the OPF. Thus, the con-
ventional methods are not suitable for analyzing OPF for
arbitrarily structures of the power grid. In addition, the above
methods provide no recourse when sufficient conditions for
relaxation are not satisfied.

Thus, there remains a need to globally optimize electric
power grids of various structures and configurations. In addi-
tion, when the power grid includes various storage devices,
there is a need to optimize the power grid considering mul-
tiple time periods of optimization.

SUMMARY OF THE INVENTION

Some embodiments of the invention are based on a real-
ization that OPF problem can be solved based on the spatial
branch and bound framework with lower bounds on the opti-
mal objective function value calculated by solving a semi-
definite programming (SDP) relaxation of the OPF. Those
embodiments are based on a recognition that search space of
the solutions and constraints of the OPF problem can be
partitioned using structure and characteristics of the elements
of the power grid, and thus the branch and bound framework
can be utilized to search for the global minimum.

In addition, some embodiments are based on a realization
that SDP relaxation of the OPF or portions of the OPF should
be used for determining the lower bounds on the optimal
objective function. Usually, the branch and bound methods
are implemented using linear under-approximation of the
optimized function, because such approximation can be effi-
ciently performed. However, the embodiments recognized
that in the context of the power flow analysis of the power
grid, the linear under-approximation of the cost function rep-
resenting the power flow is inefficient due to the shallow
structure of the cost function. Hence, it was realized that
despite of complexity of the SDP over the linear under-ap-
proximation, the usage of the SDP approximation in the con-
text of the power grids is advantageous.

Some embodiments of the invention are based on an addi-
tional realization that the branch and bound method should be
implemented such that a search for the lowest lower and upper
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2

bound in a nested region can use, as a starting point, the result
of'the search in the region from which the nested region was
partitioned according to the branch and bound principles.
This realization is based in part on the recognition that the
structure of the power grid has patterns or similarities
repeated over the span of the grid. Thus, the result of the
search in one region can be used to speed up the search over
a different region.

Unfortunately, the widely used implementation of the SDP
using interior point methods cannot accept the input specified
by the previous search. Accordingly, various embodiments
modify the SDP using various methods able to accept such
input. For example, one embodiment uses the Lagrangian
dual subgradient method to implement the SDP.

Another embodiment uses alternating direction method of
multipliers (ADMM) method. Specifically, the usage of the
ADMM method for SDP relaxation in a current iteration of
the branch and bound method allows reusing the outputs of
the previous iteration of the branch and bound method to
accelerate the convergence of the method.

The resulting modifications of the branch and bound
method allows to significantly increase the computational
efficiency of the OPF problem. For example, some embodi-
ments of the invention solve the OPF problems that cannot be
solved using conventional approaches due to lack of memory
to fit within a single processor. This efficiency allows using
the embodiments to solve multi-period optimal power flow
(MOPF) problems to global optimality. The multi-period ver-
sion of the OPF is time coupled due to the integration of
storage systems into the power grid, and ramp constraints on
the generators.

Accordingly, some embodiments of the invention provide a
method for globally optimizing a power flow in electric power
grids during multiple time periods of operation. A spatial
branch and bound (BB) procedure ensures that a globally
optimal solution is attained. The BB procedure partitions the
feasible region of the power flow problem, e.g., by partition-
ing the bound on generation variables and also constraints on
voltage magnitudes, which speeds up convergence. A lower
bound on the optimal solution is determined by semi-definite
programming (SDP), which provides a maximal lower
bound.

To accommodate large problems arising from several peri-
ods, the solution of the SDP in some embodiments of the
invention includes (i) decoupling the time-coupling con-
straints by dualization with an augmented lagrangian formu-
lation, (i) solving SDP problems corresponding to individual
time-steps and (iii) applying an alternating direction method
of multipliers applied to converge the time-decoupled con-
straints.

Also, in some embodiments, the solution of the SDP cor-
responding to each time-step includes (i) performing a clique
decomposition of the graph associated with the power grid,
and (ii) applying an alternating direction method of multipli-
ers to the augmented lagrangian formulation of the dual prob-
lem.

Accordingly, one embodiment discloses a method for
determining a power flow of a power grid. The method
includes optimizing, using a processor, an objective function
representing an operation of the power grid using a spatial
branch and bound (BB) framework for determining itera-
tively upper and lower bounds of the objective function,
wherein the lower bounds are determined using a semi-defi-
nite programming (SDP) relaxation of an optimal power flow
(OPF) problem.

Another embodiment discloses a method for solving an
optimal power flow (OPF) problem optimizing an objective
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function representing an operation of a power grid. The
method includes splitting iteratively a feasible region of the
OPF problem into a nested tree of regions corresponding to a
branch and bound (BB) tree, wherein the nested tree of
regions includes at least a first region and a second region
nested in the first region; determining an upper bound of the
OPF problem in the second region; determining a lower
bound of the OPF problem in the second region using a
semi-definite programming (SDP) relaxation of the OPF
problem, wherein a solution of the OPF problem correspond-
ing to a lower bound of the first region is an input to the SDP
relaxation; updating a lowest upper bound of the BB tree with
the upper bound of the second region, if the upper bound of
the second region is less than the lowest upper bound of the
BB tree; updating a lowest lower bound of the BB tree with
the lower bound of the second region, if the lower bound of
the second region is greater than the lowest lower bound of the
BB tree and the lower bound of the second region is lower
than the lowest lower bound of other regions of the nested
tree; updating the lowest lower bound of the BB tree with the
lowest lower bound of other regions, if the lower bound of the
second region is greater than the lowest lower bound of the
BB tree and the lower bound of the second region is greater
than the lowest lower bound of the other regions; and deter-
mining the optimal power flow based on the lowest upper
bound of the second region if a difference between the lowest
upper bound and the lowest lower bound of the second region
is less than a threshold. The steps ofthe method are performed
by a processor.

Yet another embodiment discloses a system for solving an
optimal power flow (OPF) problem optimizing an objective
function representing an operation of a power grid, compris-
ing a processor for optimizing an objective function repre-
senting an operation of the power grid using a spatial branch
and bound (BB) framework for determining iteratively upper
and lower bounds of the objective function, wherein the lower
bounds are determined using a semi-definite programming
(SDP) relaxation of an optimal power flow (OPF) problem,
wherein a solution of the OPF problem corresponding to a
lower bound of a first region is an input to the SDP relaxation
for a second region.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a topology of a power grid employing some
embodiments of the invention;

FIG. 2 is a schematic of a system and a method for deter-
mining a power flow of the power grid according to some
embodiments of the invention;

FIG. 3A is a flow chart of a method for performing the
optimization using the branch and bound (BB) framework
according to some embodiments;

FIG. 3B is an example of the BB tree;

FIGS. 4 and 5A are examples of partitioning the regions
according to different embodiments;

FIG. 5B demonstrates the advantage of using partitioning
of region shown in FIG. 5A;

FIGS. 6A and 6B show flow chart of the BB method
according to embodiments of the invention;

FIGS. 7A, 7B, 7C are examples of different stages of BB
method according to some embodiments of the invention;

FIGS. 8A, 8B are examples of different stages of BB
method according to some embodiments of the invention;

FIGS. 9A, 9B, 9C are examples of different stages of BB
method according to some embodiments of the invention;

FIGS. 10A, 10B are examples of different stages of BB
method according to some embodiments of the invention;
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FIGS. 11A, 11B are examples of different stages of BB
method according to some embodiments of the invention;

FIGS. 12A, 12B are examples of different stages of BB
method according to some embodiments of the invention;

FIGS. 13A, 13B are examples of different stages of BB
method according to some embodiments of the invention;

FIG. 14 is a pseudo code providing definition of some
matrices used by one embodiment of the invention;

FIG. 15 is a graphical representation of the time coupled
problem addressed by one embodiment of the invention;

FIG. 16 is a graphical representation of the time coupled
problem after the introduction of the additional variables
according to one embodiment of the invention;

FIG. 17 shows a graphical representation of the dual aug-
mented Lagrangian problem according to one embodiment of
the invention;

FIGS. 18 and 19 are pseudo codes defining some variables
and coefficient matrices in the ADMM for time-step t=1
according to one embodiment of the invention;

FIGS. 20 and 21 are pseudo codes defining some variables
and coefficient matrices in the ADMM for time-step t=2 . . .
T-1 according to one embodiment of the invention;

FIGS. 22 and 23 are pseudo codes defining some variables
and coefficient matrices in the ADMM for time-step t=T
according to one embodiment of the invention;

FIGS. 24A, 24B and 24C are examples of non-chordal
graphs used by various embodiments of the invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Electrical Power Network Topology and Representative
Graph

FIG. 1 shows a topology of an electric power grid that can
use embodiments of the invention. The network can include
AC components, and DC components connected by conver-
tors. The variables and constraints that control the operation
of the power grid are continuously controllable.

The power grid includes buses 10 locally connected to
loads (L) 12 and generators (G) 14. The buses are intercon-
nected by transmission lines 20, also known as branches (B).
Some of the transmission lines can be connected to trans-
formers (T) 22. The topology and/or structure of the power
grid can be represented by a graph G ofnodes 30 representing,
e.g., generators and connected loads). The nodes in the graph
are connected by edges 31 representing transmission lines.

The generators supply active power (measured in, e.g.,
Mega Watts (MW)), and reactive power (measured in Mega
Volt Ampere Reactive (MVar)). The loads consume the
power. The power is defined by voltage magnitude and phase
angle.

The parameters for the optimization include, but are not
limited to, an admittance matrix based on the branch imped-
ance and bus fixed shunt admittance, and the flow capacity
ratings, i.e., the maximal total power flow constrained by
thermal ratings.

FIG. 2 shows a schematic of a system and a method for
determining a power flow of a power grid according to some
embodiments of the invention. Some embodiments of the
invention are based on a realization that OPF problem can be
solved based on the spatial branch and bound framework with
lower bounds on the optimal objective function value calcu-
lated by solving a semi-definite programming (SDP) relax-
ation of the OPF. Those embodiments are based on recogni-
tion that search space of the solutions and constraints of the
OPF problem can be partitioned using structure and charac-
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teristics of the elements of the power grid, and thus the branch
and bound framework can be utilized to search for the global
minimum.

Accordingly, the method of FIG. 2 optimizes 220 an objec-
tive function 221 representing an operation of the power grid
using a spatial branch and bound (BB) framework 240. The
optimization can be performed by a processor 225. In various
examples of described herein, the optimization is a minimi-
zation of the objective function. However, it should be under-
stood, the problem can also be posed as maximization, e.g.,
by reversing the sign of the objective function.

Branch and bound (BB) is a method for finding optimal
solutions of various optimization problems and includes of an
iterative enumeration of all candidate solutions, where large
subsets of fruitless candidates are discarded by using upper
253 and lower 257 bounds of the quantity being optimized.

According to the BB framework, if the lower bound for
some tree node (set of candidates) A is greater than the upper
bound for some other node B, then A may be safely discarded
from the search. This step is called pruning, and is usually
implemented by maintaining a global variable m (shared
among all nodes of the tree) that records the minimum upper
bound seen among all subregions examined so far. Any node
whose lower bound is greater than m can be discarded.

Hence, various embodiment of the invention determine
250 iteratively upper 253 and lower 257 bounds of the objec-
tive function. In addition, in one embodiment, the lower
bounds on the optimal objective function are determined
using a semi-definite programming (SDP) 255 relaxation of
an optimal power flow (OPF) problem. Usually, the branch
and bound methods are implemented using linear under-ap-
proximation of the optimized function, because solution of
such approximation can be efficiently performed. However,
the embodiments recognized that in the context of the power
flow analysis of the power grid, the linear under-approxima-
tion of the cost function representing the power flow is inef-
ficient due to the over approximation of the feasible region
that results from linear approximations. Hence, it was real-
ized that despite of solution complexity of the SDP over the
linear under-approximation, the usage of the SDP approxi-
mation in the context of the power grids is advantageous.

In some embodiments, the input 210 the optimization 20
includes one or combination of the following.

1) A graph G(N,E) with a set of N nodes connected by a set of
E edges (i,j).

2) An admittance of the lines y, =g, +jb, (i, )€E, where g rep-
resents conductance of the line, b represents susceptance
(imaginary part of the admittance) of the line with j=vV-T.

3) Constraints on active power P, P ,“"ieN that can be
produced by the generators, and the reactive power Q,%™",
Q,”"*YieN that can be produced by the generators.

4) Constraints S,“*,P,"**V(i,j)eE on apparent and active
power transferred on the lines.

5) Limits V" V,"** ¥ieN on voltage magnitudes at the
buses.

6) Constraints L,"**V¥(i,j)ell on thermal losses on the lines.

The output 230 of the optimization performed at times t=
1, ..., T can include one or combination of complex valued
voltages V,(1)VieN at the buses, active and reactive power
levels P,°(1),Q,€ (t)VieN of the generators, and energy stor-
age device state-of-charge levels B,(t)VieN. Example devices
include, but are not limited to batteries, transformers, capaci-
tors, inductors, and step voltage regulators.

The global optimization uses a decision function f(P¢,Q°,
V,B) that depends on active power generation variables P“=
(PY (), ..., PET)), P(H)=P, (1), . . ., P,z (1)) reactive
power generation variables Q°=(Q°(1), . . ., Q¥(T)), Q°(t)=
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6
Q,°M), . .., ©,Q;%1), complex valued voltages V=
V@), ..., VD), VO=(V,(1), . . ., V;(1), and battery
state-of-charge levels B=(B(1), . . ., B(T)), B®O)=(B,(1), . . .,
B p(D) at the buses.

FIG. 3A shows a flow chart of a method for performing the
optimization 220 using the BB framework 240 according to
some embodiments. The method splits 310 iteratively a fea-
sible region of the OPF problem into a nested tree of regions
corresponding to a BB tree, wherein the nested tree of regions
includes a first region 311 and a second region 312 nested in
the first region.

FIG. 3B shows an example of the BB tree 301. The tree
includes a root node R, and after partitioning, child nodes R1
and R2. The tree is used to determine the global minimum for
the OPF by constructing a convex relaxation of the feasible
region R associated with the OPF that is easier to solve and
provides a lower bound (L) on the optimal objective function
value.

FIG. 4 show an example of partitioning the regions accord-
ing to some embodiments. In some embodiments, the parti-
tioning is based on structure of elements of the power grid.
For example, the partitioning of the feasible region in the
instance of optimal power flow problems can be accom-
plished by rectangular bisection on P, or Q°,. The splitting in
FIG. 4 is an instance of partitioning of the feasible region
using variable bounds.

FIG. 5A shows an example of a radial bisection on the
voltage magnitudes (e?,+F2,)°. In contrast with the embodi-
ments of FIG. 4, the splitting in FIG. 5A is based on con-
straint. Global optimization software only uses variable split-
ting instead of constraint splitting. FIG. 5B shows the feasible
region when expressed using variable bounds. In this case, the
area between the larger dotted square 510 and the smaller
dotted square 520 is the feasible region using variable bounds
of'the region enclosed by circles 505 and 515. Similarly, 530
and 540 show the area enclosed from using variable bounds as
opposed to the original area enclosed by circles 525 and 535.
Using the constraint splitting the feasible region is exactly
captured as opposed to being enlarged when using variables
bounds.

The bounding procedure 320 of the BB framework deter-
mines the upper and the lower bounds of the objective func-
tion in at least some regions including the first and the second
regions. Some embodiments of the invention are based on an
additional realization that the branch and bound method
should be implemented such that a search for the lowest lower
and upper bound in a nested region can use, as a starting point,
the result of the search in the region from which the nested
region was partitioned according to the branch and bound
principles. This realization is based in part on the recognition
that the structure of the power grid has patterns or similarities
repeated over the span of the grid. Thus, the result of the
search in one region can be used to speed up the search over
a different region. Accordingly, one embodiment uses a solu-
tion of the OPF problem corresponding to the lower bound of
the first region as an input to the SDP relaxation for deter-
mining the lower bound of the second region.

According to the BB framework, the method updates 330 a
lowest upper bound of the BB tree with an upper bound of the
second region, if the upper bound is less than the lowest upper
bound of the BB tree, and updates 340 a lowest lower bound
of'the BB tree with a lower bound of the region, if the lower
bound is greater than the lowest lower bound of the BB tree
and lower than the lower bounds of other regions of the nested
tree. In some embodiments, the method also updates the
lowest lower bound of the BB tree with the lowest lower
bound of other regions, if the lower bound of the region is
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greater than the lowest lower bound of the BB tree and greater
than the lowest lower bound of the other regions.

The power flow is determined 350 based on the lowest
upper bound of the BB tree if a difference between the lowest
upper bound and the lowest lower bound of the BB tree is less
than a threshold.

Example of the Branch and Bound Solution

FIG. 6 A shows a flow chart of a BB method for solving the
OPF problem according to one embodiment. The BB method
starts with initializing 610 the lowest upper bound on the
global optimum for the problem and lowest lower bound for
thbe global optimum of the problem respectively to U?**=400,
L est:_w.

At each node of the BB tree, an upper bounding problem is
solved 620 to obtain the upper bound (U) and a lower bound-
ing problem is solved to obtain the lower bound (L) as shown
in FIG. 7A. For example, the upper bound (U) can be deter-
mined by using local minimization, which also yields a fea-
sible solution.

The BB methods updates 625 the lowest upper bound
(UPesty, if U<U?** and updates the lowest lower bound (L?*%)
based on the nodes in the tree that are to be analyzed and lower
bound obtained for the current node (L). For nodes in BB tree
that have not been solved, an estimate of the lower bound is
used. This is typically the lower bound value of the parent
node from which it was derived.

Iflower bound and upper bound (U-L), or (U-L)/U 630 or
(U?es’_L) 635 is less than some predetermined threshold <,
then the current node is deleted from the BB tree 645. If not,
the feasible region of the current node is partitioned and two
nodes are added to the list of unexplored nodes in the BB tree
640. Next, the lowest lower bound L?*** is updated 650 based
on the unexplored nodes in the tree.

If (UPes‘_1P%) or optionally (U?*-L>*%/U*, is less
than some predetermined threshold T 655, then the BB
method terminates with the current lowest upper bounding
solution 660. Otherwise another node from the BB tree 615 is
selected to update/improve the lower and upper bound using
the solving steps.

FIG. 6B shows a block diagram of one embodiment of the
BB method, in which the solution of the upper and lower
bounding problem 620 is expanded. The upper bound prob-
lem for the node is solved 621 first. Using the obtained solu-
tion a sufficient condition for the upper bound solution to be
a globally optimal solution is checked 622. If the sufficient
condition 622 holds then the lower bounding problem for the
node is not solved. Instead, the lower bound for the node is set
to that of the upper bound 626. Then, the lower upper bound
for the BB tree is updated 627 and the algorithm proceeds to
645 ofthe flowchartin FIG. 6A. Ifthe sufficient condition 622
does nothold then, the lower bounding problem is solved 623.
The solution of the lower bounding problem is checked 623 if
it satisfies a sufficient condition that allows constructing an
upper bound solution with same objective value as the lower
bound solution. If the lower bound sufficient condition does
not hold then algorithm proceed to 625 in FIG. 6A. If the
lower bound sufficient condition 623 holds then, the upper
bound for the node is set to that obtained from the lower
bound 628 and the upper bound solution is set to that obtained
from the lower bounding problem 629. The algorithm then
proceeds to 629. Typically, the computation of the lower
bound is expensive and then sufficiency check in 622 can help
in avoiding unnecessary calculations when the upper bound
problem is indeed able to solve the node to global optimality.

For instance, after the solution of the upper and lower
bounding problems for root node R, U?*** s set to U. Further,
(U-L), and (U-LYU and (U?*-L) are all larger than the
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predetermined threshold T. In this case, global optimum can-
not be determined from R and as shown in FIG. 7B, the
feasible region R is partitioned into R1 and R2, and the BB
procedure is repeated. The resulting BB tree 700 after the
partition is shown in FIG. 3C. Now R1 and R2 are placed in a
list of nodes 710 that need to be explored and are temporarily
assigned the lower bound L based on the lower bound
obtained from the parent node R as shown in FIG. 3C. Fol-
lowing this, L?*** can be updated as the smallest of the tem-
porary lower bounds in the list of the unexplored nodes in the
list. In this case, L2*"=L..

After a node has been processed but the termination con-
ditions for BB have not been satisfied and there exist nodes
that are yet unanalyzed the BB procedure proceeds by select-
ing one of the unanalyzed nodes and calculating the upper and
lower bounds for the particular specification of the feasible
region.

For instance, suppose the region R2 is selected to be ana-
lyzed and upper and lower bounding problems are solved to
obtain U2,1.2 respectively as shown in FIG. 8 A. Further sup-
pose that U2-L2<t and U2=U"*", In this case, a globally
optimal solution has been obtained for region corresponding
to node R2 and the globally optimal solution has a larger
objective value than the best solution identified from previous
explorations in the BB tree. In such a case, the node R2 820 is
deemed as fathomed (as shown in FI1G. 8B by X) since explo-
ration of any further partition of its feasible region cannot
result in a solution that is better than the best upper bound
solution that has been obtained thus far. The list of unexplored
nodes 810 now only includes R1. Also, there is no update of
U 1P since U2=U%*" and .?** determined from the list
of unexplored nodes is still L.

The node R1 is explored and the upper and lower bounding
problems are solved to obtain U1,11 respectively as shown in
FIG. 9A. In this case, suppose (U1-L1), and (U1-1.1)/U1 and
(U?*_L) are all greater than the predetermined threshold ©
and U1<U?*‘, Hence, update U***=U1. Because the termi-
nation condition is not satisfied the feasible region corre-
sponding to R1 is further partitioned into regions R3 and R4
as shown in FIG. 9B. The resulting BB tree 900 and the list of
unexplored nodes 910 are shown in FIG. 9C. The unexplored
nodes inherit the lower bounds from the parent node R1 and
hence, L?*** which is based on the lower bound of unexplored
nodes is set to L1.

Suppose R3 is selected to be explored from the list of
unexplored nodes and the upper, lower bounds be computed
for R3 as respectively U3,L.3 as shown in FIG. 10A. Further
suppose that U3-L3<t and U3=U”**", In this case, a globally
optimal solution has been obtained for region corresponding
to node R3 and the globally optimal solution has same objec-
tive value as the best solution identified from previous explo-
rations in the BB tree. In such a case, the node R3 is deemed
as fathomed (as shown in FIG. 10B by X) since exploration of
any further partition of its feasible region cannot result in a
solution that is better than the best upper bound solution that
has been obtained thus far. The list of unexplored nodes 1010
of the BB tree 1000 now only includes R4. Also, there is no
update of U”*L**** since U3=U?*** and L”** determined
from the list of unexplored nodes is still L1.

The node R4 is explored and upper, lower bounds U4,1.4
are obtained for the feasible region corresponding to R4 as
shown in FIG. 11A. Further suppose that U4-L4<t and
U4>U%***, In this case, a globally optimal solution has been
obtained for region corresponding to the node R4 and the
globally optimal solution has a larger objective value than the
best solution identified from previous explorations in the BB
tree. In such a case, the node R4 is deemed as fathomed (as
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shown in FIG. 11B by X) since exploration of any further
partition of its feasible region cannot result in a solution that
is better than the best upper bound solution that has been
obtained thus far. The list of unexplored nodes is now empty.
At this point the globally optimal solution has been found and
it is the solution corresponding to the upper bound of
U1:Ub85t.

In other words, if there is an optimality gap, then the
feasible region is partitioned into two sub-regions, over which
the BB procedure is repeated. Nodes are deleted (in branch
and bound terms “fathomed” X) when the lower bound L is
greater than the current best upper bound. The BB procedure
terminates when all nodes have been processed. In that case,
the best upper bounding solution is returned as the globally
optimal solution.

FIGS. 12A and 12B show another example, in which the
upper bounding solution for R1 1210 satisfies the sufficient
condition 622 in FIG. 6B. In this case, L1=U1 is set as in 626
of FIG. 6B. By step 627 of FIG. 6B, the lowest upper bound
is updated as U?*~U1. The BB algorithm proceeds to step
6451in FIG. 6 A and deletes the node R1 1220 as shown in FIG.
12B. At this point, there are no more nodes to be evaluated and
the algorithm returns the upper bounding solution for R1 as
the globally optimal solution. The algorithm exploits the sat-
isfaction of the sufficient condition to avoid exploring the BB
tree further and this leads to significant computational sav-
ings.

FIGS. 13A and 13B show another example, in which the
upper bounding solution for R1 does not satisty the sufficient
condition 622 but the sufficient condition in 624 is satisfied.
Then, proceeding as per FIG. 6B the upper bound for the node
is updated as U1=L1 and the best upper bound for the BB tree

T
minimize Z S, 0%, V1), B@)

i=1

15
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works to match the periods of availability of these sources
with the demands. Again, the optimization problem needs to
account for multiple time-periods since the benefit of supply-
ing power from storage at the present time must be weighed
against possible more efficient use of the energy in storage
device at future time instances. Thus, integration of storage
into the power grid and inclusion of ramp constraints on the
generators results in MOPF problems.

In one embodiment, the form of the function f is quadratic
and strictly increasing:

T
FEE, 0%V, By = 3" 3 (e PE@) + e PR + o),

t=1 ieN

where ¢ indicates constants, with c,,,c,,;20VieN.

The equality constraints, inequality constraints and bounds
on the decision variables are used to model the limits of
feasible operation of the network. The operation of the elec-
trical network by the equality constraints is

1 (PO(0),0°0),V(©),B(0)=0¥n=1,...,Net=1,...,T

where Ne indicates the number of equality constraints.

The constraints on the power transferred on the lines and
thermal losses ensuring feasible operation are modeled as
inequality constraints

2,(P°@®),0°00,V(0,B0)=0¥n=1,... ,Ni,t=1,..., T,

where Ni indicates the number of inequality constraints.

To determine the voltages at the buses and the powers
produced by the generators, some embodiments solve the
following optimization problem to global optimality:

€9

subjectto A, (PE(), Q%(0), V(©), B@) =0V n=1,... ,Ne,r=1,... , T

(PP, 0%, VD, B)<Wn=1,... ,Nit=1,... , T,

is updated as U**=U1. In this case proceeding 625 of FIG.
6A it is clear the upper and lower bound for the node are
within tolerance and the algorithm proceeds to 645 of FIG.
6A. The current node R1 is fathomed as in FIG. 13B. Since
there are no more nodes in the BB tree the lower bounding
solution is returned as the globally optimal solution. The
algorithm exploits the satisfaction of the sufficient condition
to avoid exploring the BB tree further and this leads to sig-
nificant computational savings.

Multi-Period Optimal Power Flow

In some embodiments, the power grid includes at least one
storage system, and the objective function represents the
operation of the power grid over time. In those embodiments
the OPF is a multi-period optimal power flow (MOPF) prob-
lem.

The multi-period version of the OPF is a time coupled
version of the optimal power flow problem. The generators
typically have ramp constraints that limit the amount by
which limits the change in power generated over successive
time instances. Consequently, an optimized solution can only
be obtained if multiple time-periods are taken into account
simultaneously ensuring future fluctuations in load can
appropriately accommodated for given the limits in the ramp-
ing of generators. Also, power grids these days are closely
integrated with renewable energy sources such as wind and
solar energy. Energy storage is necessary to allow effective
use of such renewables since they are intermittent. Storage
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where Re(V,),Im(V,) denote the real and imaginary parts of
the complex voltage V , respectively, and h, represents equal-
ity constraints and g,, represents equality constraints.

Multi-Period Optimal Power Flow—Constraints

In one embodiment, the equality constraints

1, (PO),0°(0,V(1),B())=0Vn=1, ... ,Nes=1,...,T

are represented as
Power Flows on the Lines

S = Vilyy(Vi = Vi)'

V(i HeE
S; =vj(y;j(vj—v;))*} ¢ ne

Power Balances at the Buses

> Sy=SE-SP-RVieN
JeNG)

Battery Dynamics

B(t+1)=B ()R (DAVieN

B0)=B,0
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where S,(D=P,(1)+Q,(t) denotes the complex valued power
transferred from bus i to bus j at time instant t, S (1)=P ,(t)+
JQ(t) denotes the complex valued power transierred from
bus j to bus i at time instant t, (V,(t))* denotes the complex
conjugate of the complex valued variable, S,%(1)=P,“(1)+iQ,°
(t) denotes the complex valued power produced by the gen-
erators at time instant t, S2(H)=P2()+Q;/”(t) denotes the
complex valued power demands, R,(t) is the active power
used to charge the battery connected to bus i at time instant t,
B,°is the initial state-of-charge of the battery connected to bus
i, m is the storage efficiency of the battery, and At is the
duration of the time period. The variables representing power
flow on the lines are used for convenience.

In one embodiment for time period t=1, . . ., T, the inequal-
ity constraints

g.(P%,0° )=0V¥n=1,...,Nit=1,...,T

are represented as follows,
Limit on Active Power Transferred on Lines

Py(n) < P™
" }v 0. )eE
Pji(t) < P
Limit on Thermal Loss on Lines
PO+P ()<L, (i f)eE
Limit of Power Generation
PiG,min < PiG(l) < PiG,max’ QiG,min < QiG,maxVieN
Limit on Voltage Magnitude

Vs Re(V(0) P+ Im(V (1) s V"N ieN

Limit on State-of-Charge of Batteries
B""<B (=B VieN

Limit on Rate of Charge or Discharge of Batteries
R™"<R (£)=B/"*VieN

and for time periods t=1, ..., T-1
Ramp Limit on Generator Power Generation

AP <P C(141)-P,C()=AP "™ ieN

AQ"=Q, 5 (t+1)-0, % ()=AQ"*VieN

Semidefinite Program Based Lower Bound

In various embodiments, the lower bound for OPF is deter-
mined by solving the SDP relaxation of the OPF. In one
embodiment, the SDP is given by:

minimize F(P®,Q° W,B)

subject z0 H,(PC(1),0°0),W(©),B@)=0Vn=1,. ..,
Net=1,...,T

to G, (PC(1),0%(0,W(0),B(1))<0¥n=1, ..., M,
t=1,...,T

(V= Tr(MW())=(V"*)YieNt=1,..., T
W(E)> =0,W(¢) is 2INIx2 INlsymmetricmatrix
B,(t+1)=B ()R (DAt VieNt=1,..., T

AP/ <P C(t4+1)-P,C()=AP"*VieNt=1, ..., T-1

AQ/"=0.5(+1)-0. 0 (=AQ VieN=1, ..., T-1, &)

where W(t)> =0 denotes that matrix W(t) must be positive
semidefinite, the matrix operator Tr( ) is defined as
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NN

Tr(AB) = 3" > AumBn

n=1m=1

and the matrix M, is defined as

s o
M; = )
[0 4-4?}

where C, denotes a vector of size IN| with a 1 at the i-th
component and zero elsewhere.

The matrix W(t) is a relaxation of the outer vector product
of the voltage variable vector,

[Re(V(t))

Im(V () }[Re(V(t)) Im(V(@)].

In the preferred embodiment, the objective function is,

T
F(P9, 0% W, B) = 3" " (ea(PE@)” + el PE(0) +cor)

t=1 ieN

The equality constraints in the semidefinite relaxation (Eq.
2) are written as,

Py = Tr(Y; W)
00 = Tr(Y;W (@)
Pji(n) = Tr(Y ;W)
Qi) =Tr(Y ;W)

V(L )eE

PP - PP - R =Tr(iW@NV ie N
0°0-QPW =Tr(Y; WD)V ieN,

Y

where, the matrices Y, Y,

14.

Alternating Direction Method of Multipliers

Some embodiments use the alternating direction method of
multipliers (ADMM) for determining the lower bounds. Spe-
cifically, the usage of the ADMM method for SDP relaxation
in a current iteration of the branch and bound method allows
reusing the outputs of the previous iteration of the branch and
bound method to accelerate the convergence of the method.
The objective function of the OPF problem is typically qua-
dratic in the real power from generators. The use of the
ADMM for solving such SDP relaxations does not scale well
when general quadratic terms are present. This embodiment
is based on the realization that the number of generators in the
typical power grid is small compared to the buses and the
quadratic terms do not involve any cross terms. Thus, the
quadratic cost in the context of ADMM for SDP for OPF
problem can be handled efficiently.

ADMM Based Lower Bound

The SDP relaxations of the multi-period optimal power
flow problem tend to be large scale problems. Therefore,
some embodiments of the invention use decomposition meth-
ods to solve the problems effectively. For example, some
embodiments take advantage from the recognition that the

Y,,Y, are defined as shown in FIG.

i
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computational efficiency of the ADMM method can be
improved by decomposing the semidefinite constraint in the
SDP into semidefinite constraints on smaller blocks based on
the electrical network. This approach allows accelerating the
computation and further increases the efficiency of the branch
and bound method.

FIG. 15 shows a graphical representation of the time
coupled problem in terms of single time-step constraints
1505, time coupling constraints 1510, single time-step objec-
tive function contributions 1520 and the total objective func-
tion 1530 obtained by summing over the individual time-step
components. In one embodiment, an augmented Lagrangian
formulation is used to decompose the Multi-period Optimal
Power Flow problem by dualizing only the time coupled
constraints in equation (2). The constraints are the dynamics
equation for the batteries and the ramp limits for the power
generation. The first step in the decomposition is to introduce
additional variables and rewriting the time-coupled con-
straints involving the variables B, (1), P,“(1), Q,%(t).

For decoupling the constraint involving B,(t), introduce
B, (), B,(t) for t=2, . . ., T and rewrite the battery dynamics
constraint on B,(t) as,

B(2)=B(1)+nR,(1)Ar

B+ 1)=B ()R (DAL=2, ..., T-1

B{(T+1)=B{T)+nR, (DAt

B,0=B,®t=2,...,T

B(0)=B,(6),t=2, ..., T forall ieN 3)

Observe that these constraints are identical to those in (2).
For decouphng the constraint involving P,(t), introduce

P (t) P.A(t) for

t*2 , T-1 and rewrite the ramp constraints on P,(t) as,

AP <P C(t41)-P,C()=AP"™ =1, ..., T-1

PP =2,...,T

POt)=PC®)=2,..., T forallieN 4)

Observe that these constraints are identical to those in (2).

For decouphng the constraint involving Q,(t), introduce
Q “(1),Q,°(t) for t=2, , T-1 and rewrite the ramp con-
straints on Q,%(t) as,

AQ" =00 t+1)-0.C (=AQ™ =1, . .., T-1
0°m-0°0=2,...,T
0°t=0°)=2,..., T

FIG. 16 shows a graphical representation of the time
coupled problem after the introduction of the additional vari-
ables in terms of single time-step constraints 1605, time cou-
pling constraints 1610, single time-step objective function
contributions 1620 and the total objective function 1630
obtained by summing over the individual time-step compo-
nents.

The second step includes dualizing the constraints involv-
ing B(t), P,(t), Q,°(t) and also including an augmented
Lagrangian term in the objective. Prior to this the following
notation is introduced for convenience,

B8, . .., Bn(®).8=B(2), ... BD)

Bo=B\®), ..., Bm(®)B=B(2),... BD)

PG(Z):)()PIG(Z), o P CO)PO=(PC(2), . .., PO(T-
1
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F\N\G(l))PG:(FG@), A FG(T))

s O SO 0°=(0°), ...,

PCO=B %), . .,

O%(= (QIG(Z)a e
0%(7-1)

0°=0,°®, ..., O °().0°=C°), - . .,
o%(Dy)
The dual augmented Lagrangian objective function is:

©

L{PG,QG,W,B,ED o° B, 7. 0% B,T,U,o'):

T
chzi(ﬂp(f))z +cy PEW) +cop +

t=1 ieN

T
- Z (B0 -Bin+

=2 ieN

Ti,;([))z N

p Z Z (B; ) =Bi(n) + T"';([) )2 +

=2 ieN

—ZZ(P;G@) K+ ‘1())

=2 ieN

—ZT:Z (PPw-Pw+

=2 ieN

T
p A G o, 1( D\?
EY > [o-gfo+ Z10) s
=2 ieN
AN (05w -0fm+ 720 )2
3 ; ; o

=2 ieN

U(/zg(l)) N

where, T, (1), T, () is the multiplier for the constraints in
equation (3) involving B,(1), and

T (=110, - . TN, 1 (D) T O=C 5@, . . .,

Tivi (D)

T=T1(2); - - -, T D)= (T(2), - - -, To(1) T (T4, T),
and v, ,(t),v,, (t) are the multipliers for the constraints in
equation (4) 1nV01V1ng P,°(1), and

ViO=V (D, - o Vi @) VA=V 50), - Vi 2(B)

vi=(vi(@2), - ViT)Va=(Va(2), - VD)) v=(VeSVa),s

and o, (1), 0, , (1) are the multipliers the constraints in equa-
tion (5) 1nV01V1ng Q,°(t), and

01(1)(:()()51,1(1), O (0),02(0=(01 5@, . - - O N2

13

0,=(01(2), .. . ,01(1),05=(05(2), . . . ,0x(T)),0=(0},
02);

The resulting minimization problem for given values of
multipliers T,v,0 is,
M

min B 7, QG, B, 1,v, o')

e, 0% w. B, P 0%,

PG oG w,B

%8705
subject to Constraints in (2) other than battery dynamics

and ramp limits for generators

FIG. 17 shows a graphical representation of the dual aug-
mented Lagrangian problem with coupling in the objective in
terms of single time-step constraints 1705, single time-step
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objective function contributions 1710, time coupling portion
of the objective 1720 and the total objective function 1730
obtained by summing over the individual time-step compo-
nents.

In optimization problem (7) the constraints do not involve
coupling between the variables across time steps. The cou-
pling across time-steps still exists in the objective function
through the quadratic terms introduced in the augmented
Lagrangian formulation, which is resolved using the ADMM.

The ADMM proceeds by:

1) Select values for ©°,v°,0° and (P°)°, (Q°)° (B)°, conver-
gence tolerance €>0
2) Forl= l 2 3,...do

a.Fix, v',v,0 !and (P (P°Y, (Q°Y, (BY and solve for remaining
variables PO+, (QG)Z"1 Wil B! B ysing (7). With
this fixing of certain variables (7) is decoupled by time-
step. So the solution of'this problem canbe performed by
solving for each time- ste]p in parallel.

b. Fixing multipliers, v,v/,0’ and P)*!, (Q)* W™,
B™! B™! to that obtalned from Step a. and solve (7) to
obtain the values for (P P, (@Y, (B)™!. Note that
this problem is unconstrained since these variables do
not appear in the constraints of (7).

c. Update the multipliers as:

T 0 O+p B OB D)2, T
T2 O+p B OB =2, . T

Vil 0= (O (@O - )2,
v O @O PO )2,

Gi,1’*1T(l)zoi,1’(l)+9((QG)/”(l)—@G)i’”(l)),l:2, e

;5" (=0, (@D (D-@D) T O)e=2, . .,
T

d. Go to Step 2 if:

PNES R—

B —Bl 1 ot

B B 2
AG _G 1
(P) -(P) Ut -

wi |TETP |7

(fﬁ)lﬂ (T’G) U2+ _U2+
WG L gl ot — ot
@ - % o
" - %" o

The steps 2a.-2c. are repeated until convergence criterion
in step 2d is satisfied. Step 1 still involves solving a consid-
erably large SDP for a single time-step. The next section
shows how this computation can also be made efficient using
the ADMM.

ADMM for Single Time-Step Optimal Power Flow

The single time-step problem resulting from time decou-
pling described in previous section results in the following
SDP can be succinctly represented as:
iy ST Hw . 1T ®

st AW+ AT + Al = b
W <y w2yl <y

W is 2|N| % 2|N|symmetric positive semidefinite

where H¢ is a positive definite matrix.
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FIGS. 18 and 19 provide the exact definition of the vari-
ables and the coefficient matrices in the above for time-step
t=1. Similarly, FIGS. 20 and 21 provide the exact definition of
the variables and the coefficient matrices in the above for
time-step t=2 . . . T-1. FIGS. 22 and 23 provide the exact
definition of the variables and the coefficient matrices for t=T.
For convenience of providing the definitions, lower and upper
bounds are specified for all the variables by introducing addi-

: min min min
tional parameters P ™" Pioser” s Quaner s
min d max max max
Qiirer an GONEE 0 LianeE 2 RQugpeE o
)i ipee . to denote the minimum and maximum limits on

the active and reactive power flows.

The size of the semidefinite matrix W is twice the number
of nodes in the electrical network and the size of the con-
straints is on the order of the number of nodes and edges in the
power grid. This can be computationally expensive for large
grids when using interior point algorithms. To alleviate the
computational burden, the ADMM method is considered to
solve the SDP.

In the preferred embodiment the ADMM method can be
applied directly to the formulation in (8). The augmented
lagrangian formulation is,

max [t wi w,oxl X, X, 29, 2) )

Wi ud, W,

Ak x

st AW + AW 4 Al = b

Wit <y < W WP < b < ypib

X is 2|N| % 2|N|symmetric positive semidefinite

where

1
FruElag i wox 0 X, AL A7) = z(M/?)TH‘?M/? + (W +

%Hm/ - +

Hmﬂ x‘7+—H |W X+—||

where o>0 is a scalar parameter, z’ are multipliers for equality
constraints w'=x’, z¢ are multipliers for equality constraints
w?=x7, 7 is the multiplier matrix for the equality constraints
W=Z. In the above, ||| is the vector 2-norm and ||'|| is the
Frobenius norm for matrices.

The steps of the ADMM algorithm applied to the formula-
tion in (9) are:

1) Selectr)?, ()%, X, (21)°, (9)°, 2°,
convergence tolerance &> 0.
2)Fork=1,2,...

k+1’ (Mﬂ)kﬂ’ WAL from:

a. Solve for(w!)
((Wt)kﬂ’ (Wq)kﬂ’ Wk+1) -

argminf LRl w (G (0OF, @), @), Z4)
W, w

st AW + AT + Alwf = b
b. Solve for(x )™, (x| X4+ from;
((xl)kﬂ’ (xq)kﬂ’ Xk+l) =

argminf A HeLaeDuat (/L et kel o e x G @, ZF)

*lxd, x

st Wit <y < yAub bl < b < yhub
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-continued
c. Solve for(z)**, (291, Z*1 from:
X symmetric positive semidefinite

[k+1

(2)
@ = @D+ (W - @)

- (Zl)k +Dz((wl)k+l _ (xl)kﬂ)

78 = 70 bWy - (x )
d. Go to Step 2 if:
oh - s
WD — ()
wh+l _ xk

@A -
> & or of (29 - 29

z 7

>&

The solution of the optimization problem in Step 2a. can be
computationally expensive in general but in the context of
optimal power flow problems the number of generators in the
power grid is typically small. Hence, the computational cost
of'this step can be reduced considerably and this realization is
the key to solving (9) efficiently. A significant advantage of
using the ADMM algorithm is that if a good initial guess is
available for the problem (8) then the algorithm converges
quickly. Such a behavior cannot be expected for interior point
algorithms for semidefinite programs. This property is com-
monly called as warm-starting and is important especially
when semidefinite programs are to be solved as part of a
branch and bound algorithm as described earlier. The warm-
starting property of the ADMM allows to improve the overall
computational efficiency of the branch-and-bound process.

In another embodiment, the standard lagrangian dual of the
semidefinite program in (8) can be constructed and the
ADMM algorithm can be applied to the resulting dual.

Chordal Graphs and Maximal Clique Decomposition

The set of edges includes edges from a node to itself; that is
(i,)) = EVieN. The electrical networks do not contain such
self loops and have been included only for presentation. A
graph G(N,E) is said to be a clique if the graph has all possible
edges between the nodes in the graph. Further, a graph G(N,
E) is said to be chordal if for every cycle in the graph with four
or more nodes there exists an edge between two non-adjacent
vertices in the cycle.

FIG. 24A shows an example of non-chordal graph that
includes a cycle with four nodes 2401, 2402, 2403 and 2404
and adjacent edges are not connected. FIG. 24B shows a
chordal graph that is obtained from the graph in FIG. 24A by
adding the edge (2,3) 2410. The graph of FIG. 24B is called
the chordal extension of the graph in FIG. 24 A. Formally, the
chordal extension of a graph G(N,E) is the graph G(N,EUE")
where E' are additional edges that are added to the original set
of edges in E to render the resulting graph chordal. Given a
graph G(NLE) and a set N'< N then the subgraph induced by
N'is the graph G(N',E") with edges B'={(i,j)Ii,jeN',(i,j)eE}.

Given a graph that is not chordal, the following algorithm
describes how to obtain a graph with additional edges so that
the resulting graph is chordal. Such a graph is also called the
chordal extension of a graph. The chordal extension of a
graph can be obtained by following algorithm:

Input: Graph G(N, E)

Output: Ordering of vertices order(i) and additional set of edges E'
Create the adjacency list Adj(i) = {jI(i,j) € E} for each node i EN.
Assign to each node a label label(i) = |Adj(i)| for each node i € N where
IAdj(i)I denotes the degree of node.

Set the ordering for each node order(i) = O for each node i EN.
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-continued

SetN'=N,E'=0n=1.
While n = INI do
Pick node i € N' such that label(i) is the smallest
Set order(i) =n,n =n + 1,N'= N\{i}
If subgraph induced by Adj(i) is not a clique
Identify additional set of edges E(i) =
{(i"j") € Eli',j' €Adj(i)} so that Adj(i) is a clique.
Update Adj(j) for j € Adj(i) based on the additional edges
in E(i)
Set E'= E' U E(i)
Set label(j) = IAdj(j)| for all j € Adj(i)
End If
End While

It is a well known result in graph theory that every chordal
graph can be decomposed a set of maximal cliques where
maximality is defined by the non-existence of another clique
in the given graph that strictly contains it. That is, given a
chordal graph G(N,E) there exists C!, . . ., C’ where
C"=NVr=1,...,1,N=C'U ... UC" and C'xC"<=E. The
maximal cliques of a graph can be obtained as follows:

Input: Chordal graph G(N, E U E') Ordering of vertices order(i)
Output: Maximal cliques C, ... ,C’
Setl=1
For each node i node sorted in ascending order of order(i) do
Set C = {i} U {Adj(i) N {jlorder(j) > order(i)} }
If 1 == 1 then
SetC'=Cl=1+1
Else
fCEC*Vk=1,..,]-1then
SetC'=C,l=1+1
End If
End If
End For

FIG. 24C numbers the two maximal cliques present in the
graph in FIG. 24B.

Exploiting Structure in the Solution of the Single Time-
Step Optimal Power Flow

The computationally demanding task in the ADMM algo-
rithm presented for (9) is the eigenvalue decomposition that is
involved in the solution of the optimization problem for X**!
in Step 2b. To address this computational bottleneck the graph
of'the electrical network can be exploited. The graph G(N,E)
induced by the typical electrical network is sparse in the sense
that there does not exist an electrical line between every pair
of buses in the network. This sparsity can be exploited to
decompose the positive semidefinite constraint in (9) which is
on a matrix of size 2INIx2IN| into a number of positive
semidefinite constraint of smaller sized matrices. This also
allows the eigenvalue step computation to be parallelized and
allows speeding up of the algorithm. The process of decom-
position is described below.

Given, the graph of the electrical network G(N,E), let
C', ..., " denote a maximal clique decomposition satisfying
C"=NVr=1,...,],N=C' U...UC and C"xC" =E. Using
this maximal clique decomposition the single-time step opti-
mal power flow problem in (8) can be written as:

1 10
min = (W) HiwA + (h9)TwA {10
wid w2

st. AW+ AW + Alwl = b

Wq,lb <wi < Wq,ub’ Wl,lb < Wl < Wl,ub
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-continued
W is 2|C7| x2|CT|symmetric positive semidefinite

CT(i) if i < |N|

W"),. = Wy » where i’ = H
W0y = Wey {|N| +COW P> N

g

The positive semidefinite constraint is posed on a number
of smaller sized matrices as opposed to the large matrix as in
(8). Further, since matrix A only has nonzero entries for
(i,))eE we can eliminate the variables W to obtain a semidefi-
nite program only the variables { W'}, _,/, w?, w’ which will be
similar to the problem in (8) and the ADMM algorithm
described previously can be applied.

In another embodiment the standard lagrangian dual of the
semidefinite program in (10) can be constructed and the
ADMM algorithm described earlier can be applied to the dual
instead of (10).

Upper Bound—Based Sufficient Condition

The upper bound based sufficient condition is used to
verify if the obtained solution is a globally optimal solution.
This is possible in the case of MOPF since it is an instance of
a quadratically constrained quadratic program. Suppose the
optimization problem (1) is solved using a nonlinear pro-
gramming solver. Let P%"(1),Q%" (1), V*(1),B*(1),,, . rbe
the solution obtained and let (A, (1)), .. Newl, . . .. n
(}\nl’*(t))nzl Niji=1

h, and ineq’uali’ty constraints g, respectively. The sufficient
condition can be stated as follows.

The solution to the upper bounding problem is also a glo-
bally optimal solution if the matrix defined by the hessian of
the lagrangian defined in (11) is positive semidefinite. In other

words, this amount to checking if

Ui j=IN|
INI+CT(j) if /> IN]

-----

V20, Q% 0, V* @), B'0) + an
Ne

S| A O (PO 0, QO (1), VF (1), B () ++
n=l1

t=1

Ne
DA OV 8P (0, QO (1), V* (), B (@)

n=1

is positive semidefinite where, V2§, V*h , Vg, denote the
hessian of the functions f, h , g,. This check involves simply
performing an eigenvalue decomposition and can be accom-
plished with much fewer computations than solving an SDP
problem

T
minimize Z FPE@, Q%m), V(T), B(T))

=1
subject to
(PO, 0%, V@, BTN =0¥n=1,... ,Ne,r=1,... , T
2 (PP, 0%, V@), BT < 0Wn=1,... ,Nit=1,... ,T

Lower Bound—Based Sufficient Condition

The sufficient condition for the lower bound to be a glo-
bally optimal solution is to simply check if in the solution to
(2), the matrices W(t) have rank less than or equal to 2. This
again is a simple check that can be performed quickly. If the
rank some of the matrices W(t) are 1, in other words, W(t)=
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w,(Ow,(Ow, (1) where o, (t), w,(t) is the nonzero eigenvalue
and its eigenvector respectively. Then, solution to the upper
ounding problem can be obtained as, V(t)=y'w, ®)w, (t). If the
rank of some of the matrices W(t) are 2, in other words,
W(O=0,Ow, (W, (1) +0,Ow(Ow,()" where w,(1), o,(t)
are the two non-zero eigenvalues and w,(t), w,(t) are its
corresponding eigenvectors. Then, the solution to the upper
bounding problem can be obtained as V(t)=(Vo,(t)+
Va,)w, (1)

Although the invention has been described by way of
examples of preferred embodiments, it is to be understood
that various other adaptations and modifications can be made
within the spirit and scope of the invention. Therefore, it is the
object of the appended claims to cover all such variations and
modifications as come within the true spirit and scope of the
invention.

We claim:
1. A method for determining a power flow of a power grid,
comprising:
optimizing, using a processor, an objective function repre-
senting an operation of the power grid using a spatial
branch and bound (BB) framework for determining
iteratively upper and lower bounds ofthe objective func-
tion, wherein the lower bounds are determined using a
semi-definite programming (SDP) relaxation of an opti-
mal power flow (OPF) problem.
2. The method of claim 1, wherein the optimizing com-
prises:
partitioning iteratively a feasible region of the OPF prob-
lem into a nested tree of regions corresponding to a BB
tree, wherein the nested tree of regions includes a first
region and a second region nested in the first region; and

determining the upper and the lower bounds of the objec-
tive function in at least some regions including the first
and the second regions, wherein a solution of the OPF
problem corresponding to the lower bound of the first
region is an input to the SDP relaxation for determining
the lower bound of the second region.

3. The method of claim 2, further comprising:

updating a lowest upper bound of the BB tree with an upper

bound of the second region, if the upper bound is less
than the lowest upper bound of the BB tree;
updating a lowest lower bound of the BB tree with a lower
bound of the region, if the lower bound is greater than the
lowest lower bound of the BB tree and lower than the
lower bounds of other regions of the nested tree; and

determining the power flow based on the lowest upper
bound of the BB tree if a difference between the lowest
upper bound and the lowest lower bound of the BB tree
is less than a threshold.

4. The method of claim 3, further comprising:

updating the lowest lower bound of the BB tree with the

lowest lower bound of other regions, if the lower bound
of the region is greater than the lowest lower bound of
the BB tree and greater than the lowest lower bound of
the other regions.

5. The method of claim 3, wherein the upper bound solu-
tion for each node of the BB tree is checked for a satisfaction
ofa sufficient condition for global optimality before the lower
bound problem is solved.

6. The method of claim 3, wherein the lower bound solu-
tion for each node of the BB tree is checked for a satisfaction
of a sufficient condition for global optimality and if globally
optimal, is used to construct an upper bound solution.

7. The method of claim 2, wherein the splitting is based on
structure of elements of the power grid.
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8. The method of claim 2, wherein the SDP relaxation uses
an alternating direction method of multipliers (ADMM)
method.

9. The method of claim 8, further comprising:

decomposing semi-definite constraints in the SDP into

semi-definite constraints on smaller blocks comprising
maximal clique subgraphs of the graph based on an
electrical network.

10. The method of claim 1, wherein the power grid includes
at least one storage system, the objective function represents
the operation of the power grid over time, and wherein the
OPF is a multi-period optimal power flow (MOPF) problem.

11. The method of claim 10, further comprising:

decoupling time-coupling constraints by dualization with

an augmented Lagrangian formulation;

solving SDP problems corresponding to individual time-

steps; and

applying an alternating direction method of multipliers

(ADMM) method to converge the time-decoupled con-
straints.

12. The method of claim 11, wherein the solving the SDP
problem for each time-step comprises:

performing a clique decomposition of a graph associated

with the power grid; and

applying the ADMM to the augmented Lagrangian formu-

lation of the dual problem.

13. A method for solving an optimal power flow (OPF)
problem optimizing an objective function representing an
operation of a power grid, comprising:

partitioning iteratively a feasible region of the OPF prob-

lem into a nested tree of regions corresponding to a
branch and bound (BB) tree, wherein the nested tree of
regions includes at least a first region and a second
region nested in the first region;

determining an upper bound of the OPF problem in the

second region;

determining a lower bound of the OPF problem in the

second region using a semi-definite programming (SDP)
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relaxation of the OPF problem, wherein a solution of the
OPF problem corresponding to a lower bound of the first
region is an input to the SDP relaxation;

updating a lowest upper bound of the BB tree with the

upper bound of the second region, if the upper bound of
the second region is less than the lowest upper bound of
the BB tree;

updating a lowest lower bound of the BB tree with the

lower bound of the second region, if the lower bound of
the second region is greater than the lowest lower bound
of the BB tree and the lower bound of the second region
is lower than lowest lower bound of other regions of the
nested tree;

updating the lowest lower bound of the BB tree with the

lowest lower bound of other regions, if the lower bound
of the second region is greater than the lowest lower
bound of the BB tree and the lower bound of the second
region is greater than the lowest lower bound of the other
regions; and

determining the optimal power flow based on the lowest

upper bound of the second region if a difference between
the lowest upper bound and the lowest lower bound of
the second region is less than a threshold, wherein steps
of the method are performed by a processor.

14. A system for solving an optimal power flow (OPF)
problem optimizing an objective function representing an
operation of a power grid, comprising a processor for opti-
mizing an objective function representing an operation of the
power grid using a spatial branch and bound (BB) framework
for determining iteratively upper and lower bounds of the
objective function, wherein the lower bounds are determined
using a semi-definite programming (SDP) relaxation of an
optimal power flow (OPF) problem, wherein a solution of the
OPF problem corresponding to a lower bound of a first region
is an input to the SDP relaxation for a second region.
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